Определения.
Опр: V – словом в алфавите А, называется любая конечная упорядоченная последовательность его букв.
Опр: Формативная последовательность слов – конечная последовательность слов и высказываний , если они имеют формат вида:
Опр: F – формулой ИВ, называется любое слово, входящее в какую-нибудь формативную последовательность.
Пример:
Опр: Аксиомы – специально выделенное подмножество формул.
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
Reg – правила вывода ИВ (некоторые правила преобразования первого слова в другое).
a – символ переменной
— произвольное слово ИВ (формула)
Отображение действует так, что на место каждого вхождения символа а , пишется слово .
Пример:
Правило modusponens:
3.1.2 Формальный вывод.(простейшая модель доказательства теоремы)
Опр: Последовательность формул ИВ, называется формальным выводом, если каждая формула этой последовательности имеет следующий вид:
Опр: Выводимый формулой (теоремой) ИВ называется любая формула входящая в какой-нибудь формальный вывод. — выводимая формула ИВ.
Пример:
1) | ||
2) | ||
3) | ||
4) | ||
5) | ||
6) |
Правило одновременной подстановки.
Замечание: Если формула выводима, то выводима и
Возьмем формативную последовательность вывода и добавим в неё , получившаяся последовательность является формальным выводом.
(Если выводима то если , то выводима )
Теор: Если выводимая формула , то ( — различные символы переменных) выводима
Выберем — символы переменных которые различны между собой и не входят не в одну из формул , сделаем подстановку и последовательно применим и в новом слове делаем последовательную подстановку: , где — является формальным выводом.
3.1.3 Формальный вывод из гипотез.
Опр: Формальным выводом из гипотез (формулы), называется такая последовательность слов , каждая из которых удовлетворяет условию:
если формулу можно включить в некоторый формальный вывод из гипотез .
Лемма: ; : то тогда
Напишем список:
Лемма:
Док:
3.1.4 Теорема Дедукции.
Если из
1) и 2а) , где по правилу m.p. , ч.т.д.
2б) — уже выводили , ч.т.д.
Базис индукции: N=1 — формальный вывод из длинного списка
(только что доказано), осуществим переход по индукции:
по индукции
и по лемме 2
Пример:
по теореме дедукции