Схемы отношений между понятиями

Отношения между понятиями принято изображать с помощью круговых схем, называемых кругами Эйлера. Каждый круг обозначает объем понятия, а каждая его точка – предмет, содержащийся в его объеме. Круговые схемы позволяют представить отношение между различными понятиями.

Отношения совместимости могут быть трех видов. Сюда входят равнозначность, перекрещивание и подчинение.

Равнозначность. Отношение равнозначности иначе называется тождеством понятий. Оно возникает между понятиями, содержащими один и тот же предмет. Объемы этих понятий совпадают полностью при разном содержании. В отношении равнозначности находятся понятия, в которых мыслится один и тот же предмет.

Пример: «равносторонний прямоугольник» и «квадрат». В этих понятиях один и того же предмет – квадрата, значит, объемы этих понятий полностью совпадают. Однако содержание их различно. (рис. 1).

Пересечение (перекрещивание). Понятиями, находящимися в отношении пересечения, признаются те, объемы которых совпадают частично. Содержание таких понятий будет разным.

Пример: «селянин» и «тракторист»; «математик» и «репетитор».Не все селяне есть трактористы и не все трактористы являются селянами. (рис. 2).

Подчинение (субординация). Отношение субординации характерно тем, что объем одного понятия полностью входит в объем другого, но не исчерпывает его, а составляет лишь часть. (рис 3). «Это отношения род – > вид – > индивид».

Возможна ситуация, когда в отношение подчинения вступают общее и единичное понятия. В этом случае общее и по совместительству подчиняющее понятие является видом. Единичное понятие становится по отношению к общему индивидом.

Отношение подчинения можно отразить в линейных схемах: «род – > вид – > вид».

Несовместимыми являются понятия, объемы которых не совпадают ни полностью, ни частично.

Отношения несовместимости принято делить на три вида, среди которых различают соподчинение, противоположность и противоречие.

Соподчинение. Отношение соподчинения возникает в случае, когда рассматриваются несколько понятий, исключающих друг друга, но при этом имеющих подчинение другому, общему для них, более широкому (родовому) понятию. (рис. 4). Понятия, находящиеся в отношении подчинения к более общему для них понятию, но не пересекающиеся, носят название соподчиненных.

Соподчиненные понятия – это виды родового понятия.

Противоположность (контрастность). Понятиями, находящимися в отношении противоположности, можно назвать такие виды одного рода, содержания каждого из которых отражают определенные признаки, не только взаимоисключающие, но и заменяющие друг друга.

Объемы двух противоположных понятий составляют в своей совокупности лишь часть объема общего для них родового понятия, видами которого они являются и которому они соподчинены.

Противоположные понятия, допустим «белый» и «черный», находятся на разных сторонах этого круга и отделены друг от друга другими понятиями, среди которых находятся, например, «серый» и «зеленый» (рис. 5).

Противоречие (контрадикторность). Отношение противоречия возникает между двумя понятиями, одно из которых содержит определенные признаки, а другое отрицает (исключает) эти признаки, не заменяя их другими.

google_protectAndRun(«ads_core.google_render_ad», google_handleError, google_render_ad); В связи с этим два видовых понятия, находящихся в отношении противоречия, занимают весь объем понятия, являющегося для них родовым.

В отношение противоречия вступают положительные и отрицательные понятия. Слова, составляющие противоречивые понятия, также являются антонимами. (рис. 6).

Несравнимые понятия далеки друг от друга по своему содержанию и не имеют общих признаков. Так, «гвоздь» и «вакуум» будут несравнимыми понятиями. Все понятия, которые нельзя назвать несравнимыми, являются сравнимыми.

Сравнимые понятия имеют разделение на совместимые и несовместимые. Разделение это проводится исходя из объемов данных понятий. Объемы совместимых понятий совпадают полностью или в части, и содержание этих понятий не имеет признаков, исключающих совпадение их объемов. Объемы несовместимых понятий не имеют общих элементов.

 

Логика - доступно для всех