Научной индукцией называют умозаключение, в котором общение строится путем отбора необходимых и исключения случайных обстоятельств.
В зависимости от способов исследования различают: (1) индукцию методом отбора (селекции) и (2) индукцию методом исключения (элиминации).
1. Индукция методом отбора
Индукция методом отбора, или селективная индукция, — это умозаключение, в котором вывод о принадлежности признака классу (множеству) основывается на знании об образце (подмножестве), полученном методичным отбором явлений из различных частей этого класса.
2. Индукция методом исключения
Индукция методом исключения, или элиминативная индукция, — это система умозаключений, в которой выводы о причинах исследуемых явлений строятся путем обнаружения подтверждающих обстоятельств и исключения обстоятельств, не удовлетворяющих свойствам причинной связи.
Познавательная роль элиминативной индукции — анализ причинных связей. Причинной называют такую связь между двумя явлениями, когда одно из них — причина — предшествует и вызывает другое — действие. Важнейшими свойствами причинной связи, предопределяющими методичность элиминативной индукции, выступают такие ее характеристики, как: (1) всеобщность, (2) последовательность во времени, (3) необходимость и (4) однозначность.
(1) Всеобщность причинной связи означает, что в мире не существует беспричинных явлений. Каждое явление имеет свою причину, которая может быть раньше или позже выявлена в процессе исследования.
(2) Последовательность во времени означает, что причина всегда предшествует действию. В одних случаях действие наступает вслед за причиной мгновенно, в считанные доли секунды. В других случаях причина вызывает действие через более длительный промежуток времени.
(3) Причинная связь отличается свойством необходимости. Это значит, что действие может осуществиться лишь при наличии причины, отсутствие причины с необходимостью ведет к отсутствию действия.
(4) Однозначный характер причинной связи проявляется в том, что каждая конкретная причина всегда вызывает вполне определенное, соответствующее ей действие. Зависимость между причиной и действием такова, что видоизменения в причине с необходимостью влекут видоизменения в действии, и наоборот, изменения в действии служат показателем изменения в причине.
Методы научной индукции
Современная логика описывает пять методов установления причинных связей: (1) метод сходства, (2) метод различия, (3) соединенный метод сходства и различия, (4) метод сопутствующих изменений, (5) метод остатков.
1. Метод сходства
По методу сходства сравнивают несколько случаев, в каждом из которых исследуемое явление наступает; при этом все случаи сходны лишь в одном и различны во всех других обстоятельствах.
Метод сходства называют методом нахождения общего в различном, поскольку все случаи заметно отличаются друг от друга, кроме одного обстоятельства.
2. Метод различия
По методу различия сравнивают два случая, в одном из которых исследуемое явление наступает, а в другом не наступает; пpи этом второй случай отличается от первого лишь одним обстоятельством, а все другие являются сходными.
Метод различия называют методом нахождения различного в сходном, ибо сравниваемые случаи совпадают друг с другом по многим свойствам.
3. Соединенный метод сходства и различия
Этот метод представляет собой комбинацию первых двух методов, когда путем анализа множества случаев обнаруживают как сходное в различном, так и различное в сходном.
4. Метод сопутствующих изменении
Метод применяется при анализе случаев, в которых имеет место видоизменение одного из предшествующих обстоятельств сопровождаемое видоизменением исследуемого действия.
Сопутствующие изменения могут быть прямыми и обратными. Прямая зависимость означает: чем интенсивнее проявление предшествующего фактора, тем активнее проявляет себя и исследуемое явление, и наоборот, — с падением интенсивности соответственно снижается и активность или степень проявления действия.
Любой процесс количественных изменений имеет свои критические точки, которые следует учитывать при применении метода сопутствующих изменений, эффективно действующего лишь в рамках шкалы интенсивности. Использование метода без учета пограничных зон количественных изменений может приводить к логически некорректным результатам.
5. Метод остатков
Применение метода связано с установлением причины, вызывающей определенную часть сложного действия при условии, что причины, вызывающие другие части этого действия, уже выявлены.
Подобно другим индуктивным выводам метод остатков дает, как правило, проблематичное знание.
Статистические обобщения
Особым видом умозаключений неполной индукции являются статистические обобщения, связанные с анализом массовых событий. К ним относятся, например, массовые транспортные перевозки пассажиров и грузов, рождаемость и смертность людей, распространение заболеваний, транспортные происшествия, динамика преступлений и многие другие.
Учитывая трудности выявления причинных зависимостей, анализ таких массовых событий позволяет установить устойчивое распределение интересующих исследователя случайных признаков. Количественная информация, выражающая устойчивые тенденции развития, имеет важное практическое значение для правильной организации обслуживания населения, профилактических мероприятий, борьбы с преступностью и т.п. Анализ массовых событий ведется чаще всего путем не сплошного, а выборочного исследования отдельных групп или образцов и логического переноса полученных результатов на все их множество. Вывод в этом случае протекает в форме статистического обобщения.
Статистическое обобщение — это умозаключение неполной индукции, в котором установленная в посылках количественная информация о частоте определенного признака в исследуемой группе (образце) переносится в заключении на все множество явлений этого рода.
В отличие от индукции через перечисление при отсутствии противоречащего случая в посылках статистического умозаключения фиксируется следующая информация: (1) общее число составляющих исследуемую группу, или образец случаев; (2) число случаев, в которых присутствует интересующий исследователя признак; (3) частота появления интересующего признака.
Статистическое обобщение, будучи выводом неполной индукции, относится к недемонстративным умозаключениям.