Отношения между понятиями.

Рассмотрим логические отношения, существующие между понятиями.

1. Подчинение понятий  (subordinatio   notionurn) мы имеем в том случае, когда одно понятие относится к другому, как вид к своему роду, когда одно понятие    входит в объём другого как часть его объема. Для примера возьмём понятие «дерево» А и понятие «берёза» В. Последнее понятие входит в объём первого. (Символ подчинения понятий см. на рис. 4.) Другие примеры: «духовная деятельность», «ощущение вкуса», «человек», «математик».

2. Соподчинение понятий (coordinatio notionum) мы имеем в том случае, если а объём одного и того же более широкого понятия входят два иди несколько одинаково подчинённых ему низших понятий. Эти низшие понятия называются соподчинёнными (координированными). Например, «мужество» В, «умеренность» С, «добродетель» А. Оба первых понятия входят в объём последнего (рис. 5).

Рис. 5.

1.        Понятия  равнозначащие (notiones aequipollentes). Для разъяснения этого отношения возьмём два понятия: «английский народ» и «первые мореплаватели в мире». Когда мы произносим слова «английский народ» и при этом имеем в уме понятие «английский народ», мы думаем об англичанах. Когда мы произносим слова «первые мореплаватели», мы также думаем об англичанах; следовательно, объём этих двух понятий один и тот же. Раскроем теперь содержание этих понятий. В понятии «английский народ» мы мыслим известное политическое устройство, известную территорию, известную культуру и т. д., в понятии же «первые мореплаватели» — известное искусство в постройке кораблей и управлении ими, известное развитие морской торговли, многочисленность флота и т. д.; следовательно, содержание этих понятий различно. Если у нас есть два понятия с различным содержанием, но одинаковым объёмом, то такие понятия называются равнозначащими. Другие примеры: «христианин — крещёный», «органический — смертный», «величайший писатель—автор «Войны и мира». Равнозначащие понятия можно символизировать при помощи двух кругов, сливающихся в один, подобно тому как сливаются объёмы указанных понятий; различие же содержания символизируется двумя различными буквами, стоящими в этом круге (рис. 6).

4. Противные и противоречащие понятия. На эти два различных класса понятий, очень сходных по своим внешним свойствам, но в то же время совершенно различных по существу, следует обратить особенное внимание и хорошенько продумать их различие, .так как при оперировании с ними легко впасть в ошибку.

Если мы возьмём объём какого-нибудь понятия и будем распределять по степени сходства виды, входящие в него, таким образом, что после каждого вида мы будем брать следующий, наименее от него отличный, то в конце концов из этих понятий-видов получится ряд, в котором первый и последний члены очень сильно отличаются друг от друга. Эти-то два понятия, первое и последнее, во взятом нами ряде видов находятся в отношении противности или противоположности. Будем, например, указанным способом распределять виды понятия «цвет». В его объём входят различные оттенки всевозможных цветов: красного, зелёного, чёрного, белого, серого и т. п. Если мы указанным выше способом будем размещать виды в ряд по мере сходства их, то можем получить приблизительно следующий ряд: белый, беловатый, светло-серый, серый, темно-серый, черноватый, чёрный.

Рис. 7.

 

Рис. 8.

Как видно из этого, наибольшее различие здесь между понятиями «белый» и «чёрный»; они-то и суть противоположные или противные понятия. Итак, понятия, входящие в один и тот же объём, но очень отличающиеся друг от Друга, называются противными (contrariae). Схема: в круге, символизирующем объём какого-нибудь понятия, двумя линиями отделены два крайних отрезка, один против другого (рис. 7). Другие примеры: «добрый», «злой»; «высокий», «низкий»; «красивый», «уродливый»; «громкий», «тихий»; «глубокий», «мелкий». Надо заметить, что не все понятия имеют противные им понятия. Например, понятие «голубой» не имеет противного ему понятия.

5. Скрещивающиеся понятия (notiones inter se convenientes). Если мы имеем два понятия, содержание которых различно, но объёмы некоторыми своими частями совпадают, то такие два понятия называются скрещивающимися. Возьмём два понятия, например А — «писатели» и В — «учёные». В объёме понятия «писатели» заключается часть объёма понятия «учёные», ибо некоторые писатели суть учёные, и, с другой стороны, в объёме понятия «учёные» заключается некоторая часть объёма понятия «писатели», ибо некоторые из учёных суть писатели. Это мы могли бы изобразить при помощи схемы на рис. 9.

Так как та часть объёма понятия «писатели», которая состоит из учёных, и та часть объёма понятия «учёные», которая состоит из писателей, логически между собой равны, то символически их можно представить равными частями двух кругов, которые при наложении могли бы совпасть. Поэтому схемой скрещивающихся понятий могут служить два скрещивающихся круга, причём круги символизируют объёмы данных понятий, а место их  скрещивания — совпадающие, логически равные части этих  объёмов. Другой пример — прямоугольные фигуры и параллелограммы, ибо некоторые прямоугольные фигуры суть параллелограммы и некоторые параллелограммы суть прямоугольные фигуры.

6. Понятия несравнимые (notiones disparatae). Возьмём два понятия: «душа» и «треугольник». Для этих двух понятий нет общего ближайшего родового понятия, в объём которого они могли бы оба войти как координированные. Между ними нет ничего такого общего, что могло бы для них явиться посредствующим, связывающим элементом, на основании которого их можно было бы сравнить. Такие два понятия находятся в логическом отношении несравнимости. Для того чтобы можно было сравнить два понятия, необходимо нечто третье, что объединяло бы эти понятия, — это именно ближайшее общее понятие, в объём которого они входили бы. Это третье понятие называется tertium comparationis.

Сюда же относятся понятия, которые вообще получены неотрицательным путём, например «бесконечный», «бесспорный» и т. п., если эти понятия могут быть символизированы только что указанным способом.

Следует заметить, что речь идёт об отсутствии ближайшего родового понятия. Если мы возьмём, например, два таких понятия, как «корабль» и «чернильница», то при всём различии их они имеют нечто общее (и то и другое есть вещь), но нет ближайшего родового понятия, в объём которого они входили бы.

 

Логика - доступно для всех