Под доказательством в логике понимается процедура установления истинности некоторого утверждения путем приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.
В доказательстве различаются тезис –утверждение, которое нужно доказать, основание (аргументы) – те положения, с помощью которых доказывается тезис, илогическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства. В обычной практике мы редко формулируем все используемые посылки и, в сущности, никогда не обращаем внимания на применяемые нами правила логики.
Одна из основных задач логики состоит в придании точного значения понятию доказательства. Но хотя это понятие является едва ли не главным в логике, оно не имеет точного, строго универсального определения, применимого во всех случаях и в любых научных теориях.
С точки зрения общего движения мысли все доказательства подразделяются на прямые и косвенные.
При прямом доказательстве задача состоит в том, чтобы подыскать такие убедительные аргументы, из которых по логическим правилам получается тезис.
Например, нужно доказать, что сумма углов четырехугольника равна 360°. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из этих положений выводим, что сумма углов четырехугольника равна 360°.
Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противоположного ему допущения (антитезиса).
Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является, как говорят, доказательством от противного.
Допустим, нужно построить косвенное доказательство такого весьма тривиального тезиса: «Квадрат не является окружностью». Выдвигается антитезис: «Квадрат есть окружность». Необходимо доказать ложность этого утверждения. С этой целью выводим из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверно, в частности, такое следствие: у квадрата нет углов. Поскольку антитезис ложен, исходный тезис должен быть истинным.
Опровержение – это рассуждение, направленное против выдвинутого положения и имеющее своей целью установление его ошибочности или недоказанности.
Наиболее распространенный прием опровержения – выведение из опровергаемого утверждения следствий, противоречащих истине. Хорошо известно, что, если даже одно-единственное логическое следствие некоторого положения неверно, ошибочным будет и само это положение.
Утверждение и его отрицание не могут быть одновременно истинными. Как только удается показать, что верно отрицание рассматриваемого положения, вопрос об истинности самого этого положения автоматически отпадет. Достаточно, скажем, показать одного черного лебедя, чтобы опровергнуть убеждение в том, что лебеди бывают только белыми.
Особое значение при опровержении имеют факты. Ссылка на верные и неоспоримые факты, противоречащие ложным или сомнительным утверждениям оппонента, –самый надежный и успешный способ опровержения. Реальное явление или событие, не согласующееся со следствиями какого-либо универсального положения, опровергает не только эти следствия, но и само положение. Факты, как известно, упрямая вещь. При опровержении ошибочных, оторванных от реальности, умозрительных конструкций «упрямство фактов» проявляется особенно ярко.
Опровержение может быть направлено на саму связь аргументов и доказываемого положения. В этом случае надо показать, что тезис не вытекает из доводов, приведенных в его обоснование. Если между аргументами и тезисом нет логической связи, то нет и доказательства тезиса с помощью указанных аргументов. Из этого не следует, конечно, ни то, что аргументы ошибочны, ни то, что тезис ложен.