Общая характеристика дедуктивных умозаключений. Определение посылок,

Дедукцию (в переводе с лат. deductio – выведение) часто характеризуют как умозаключение от общего к частному. Эта не вполне верная характеристика дедуктивных умозаключений связана с их противопоставлением индуктивным умозаключениям. Более верно следующее определение:

дедуктивные умозаключения – это такие умозаключения, которые при условии истинности посылок должны гарантировать истинность заключения.

Посылки – это те суждения, из которых выводится последнее суждение, называемое заключением; заключение – это суждение, которое выводится из предыдущих суждений (посылок).

Истинность заключения при истинности посылок в дедуктивных умозаключениях обусловливается тем, что в этих умозаключениях между посылками и заключением существует отношение логического следования.

В силу того, что в дедуктивных умозаключениях заключение логически следует из посылок, они представляют собой самый надёжный способ доказательства. Однако надёжность дедуктивных умозаключений существует в ущерб их информативности, то есть они не дают новой информации о мире. В заключениях этих умозаключений содержится та же самая информация, что и в посылках, и нет никакой новой информации. Поэтому выводы данного типа достоверны: если истинна информация в посылках, то истинна и та её часть, которая содержится (выводится) в заключении. Действительно, рассмотрим такие дедуктивные умозаключения, как простой категорический силлогизм:

Все люди смертны.

Ты – человек.

Следовательно, ты смертен.

или условно-категорическое умозаключение:

Если на улице дождь, то на улице лужи.

На улице дождь.

Следовательно, на улице лужи.

Ни в одном, ни в другом умозаключении суждения, являющиеся заключениями дедукции (расположены под чертой), не представляют интереса с точки зрения получения новой информации.

 

Тем не менее дедукция даёт новое знание, но в том смысле, что она изменяет познавательный статус суждений, их место в системе наших знаний о мире, то есть, обосновывая мнения, догадки, доказывая гипотезы, предположения и т.п., превращает их в теоремы, законы, убеждения и т.п.

 

Логика - доступно для всех