Логика - доступно для всех

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Правила записи сложных формул

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Рассмотренные логические операции позволяют формализовать с помощью термов, предикатов и кванторов внутреннюю структу­ру предложения и формировать сложные суждения.

Пример: Суждение “Некоторые действительные числа являются рациональными”.

 В этом суждении есть два предиката P1(x):=”быть действительным числом” и P2(x):=”быть рациональным числом”. Формула сложного суждения должна быть записана так:

F=$x(P1(x)&P2(x)).

Ошибочной является формула F=$x(P1(x)®P2(x)):=”некоторые числа, если они являются действительными, то они рациональные, т.к. замена безкванторной части на эквивалентную дает F=$x(ùP1(x)ÚP2(x)):=”некоторые числа не являются действительными или являются рациональными”.

Пример: Суждение “Все рациональные числа действительные”.

Формула сложного суждения должна быть записана так:

F="x(P1(x)®P2(x)).

Ошибочной является формула F="x(P1(x)&P2(x)):=”все числа являются и действительными и рациональными”.

Пример: Суждение “Ни один человек не является четвероногим. Все женщины – люди. Следовательно, не одна женщина не является четвероногой”[15].

В этом суждении три одноместных предиката P1(x):”быть индивидом”, P2(x):=”быть женщиной” и P3(x):=”быть четвероногим”.

Формула сложного суждения должна быть записана так:

Правила записи сложных формул"x(P1(x)® ùP3(x)); "x(P2(x)®P1(x))

"x(P2(x)® ùP3(x)).

Пример: Суждение “Некоторые республиканцы любят всех демократов. Ни один республиканец не любит ни одного социалиста. Следовательно, ни один один демократ не является социалистом”[13].

В этом суждении три одноместных предиката P1(x):=”быть республиканцем”, P2(x):=”быть демократом”, P3(x):=”быть социалистом” и один двухместный предикат P24(x; y):=”x любит y”.

Формула сложного суждения должна быть записана так:

Правила записи сложных формул               $x (P1(x)&"y(P2(y)®P24(x; y))); ù"x(P1(x)®"y(P3(y)®ùP24(x; y)))

"x(P2(x)®ùP3(x)).

 

Пример: Суждение “Ни один торговец наркотиками не является наркоманом. Некоторые наркоманы привлекались к ответственности. Следовательно, некоторые люди, привлекавшиеся к ответственности, не являются торговцами наркотиков”.

В этом суждении три одноместных предиката P1(x):=”быть торговцем наркотиков”, P2(x):=”быть наркоманом”, P3(x):=”привлекаться к ответственности ”.

Формула сложного суждения должна быть записана так:

Правила записи сложных формул                                  "x(P1(x)®P2(x)); $x(P2(x)& P3(y))

$x(P3(x)&ùP1(x)).

Пример: Суждение “Саша – мальчик, у которого нет машины. Таня –девочка, которая любит мальчиков, имеющих машины. Следовательно, Таня не любит Сашу”.

В этом суждении два одноместных предиката

P1(x):=”быть мальчиком”, P2(x):=”быть девочкой”, и два двухместных P3(x; y):=”x любит y”, P4(x; y):=”x имеет y” три высказывания P1(a):=”Саша – мальчик”, P2(b):=”Таня - девочка” и ùP4(a; c):=”Саша не имеет  машины (с)”.

Формула сложного суждения должна быть записана так:

Правила записи сложных формул                        P1(a); P2(b); ùP4(a; c); $x(P2(x)&"y(P1(y) &P4(y; c)® P3(x; y))

P2(b)&ùP3(b; a)).

 Приведенные примеры позволяют сформулировать некоторые правила записи сложных суждений.

1) каждое вхождение логической связки “ù” относится к формуле, следующей непосредственно за логической связкой справа;

2) каждое вхождение логической связки “&” после расстановки скобок связывает формулы, непосредственно окружающие логическую связку;

3) каждое вхождение логической связки “Ú” после расстановки скобок связывает формулы, непосредственно окружающие эту связку.

4)Логические связки по силе и значимости могут быть упорядочены так:

ù; &; Ú; ®; «.

5) за квантором общности чаще всего следует логическая связка импликации, а за квантором существования - конъюнкции;

6) если формула содержит подформулу, то внутренняя формула не должна содержать кванторов, связывающих ту же переменную, что и квантор формулы;

7) значения всех предметных переменных и постоянных должны принадлежать одной области определения предиката или функции;

8)           если в одной формуле есть кванторы общности и существования, то при формализации суждений следует стремиться поставить квантор существования слева всей формулы.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

 

 

Случайная новость