Логика - доступно для всех

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Интерпретация формул

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Под интерпретацией следует понимать систему, состоящую из не­пустого множества V, называемом универсумом, и однозначного отображения на двухэлементное множество {и; л}, кото­рое каждому предикатному символу Pn  (t1; t2;¼ tn ) ставит в соот­ветствие  n - местное отношение на множестве V, каждому функциональному символу f ni  (t1; t2;¼ tn ) - n-местную операцию на множестве V, каждой предметной постоянной - элемент множе­ства V.

 При заданной интерпретации предметные переменные рассматриваются как переменные, пробегающие область универсума V, а символам логических и кванторных операций придается их обычный смысл.

Например, если универсум задан множеством целых чисел, то для $x $y $z (P2 (+(x, y); z)):= “существуют числа x, y, z, для которых z больше суммы чисел х и у", то при х=2, у=3, z=10 имеем двухместную операцию =5 и двухместное отношение между целым числом 10 и значением операции +(2,3)=5. Отображение P2(5;10) на двухэлементное множество дает значение “и”. При х=2, у=3, z=4 имеем +(2,3)=5 и P2 (5; 4)=л.

На рис. 10 приведена графическая интерпретация этой задачи.


Интерпретация формул
 

 

 

 

 

 


Подпись: P2 (5; 4)

 

 

 

 

 

 


Рис.10 Интерпретация $x $y $z (P2 (+(x, y); z)) для x=2, y=3, z=10 или z=4.

 

Другими словами, интерпретация функциональных символов опре­деляется по значениям функции на универсуме, заданном на множестве термов, входящих аргументами в эту функ­цию, а интерпретация предикатных символов по отображению на двухэлементное множество {и; л}.

Особо следует рассмотреть влияние свободных переменных  на интерпретацию формул исчисления предикатов.

Формула, не содержащая свободных переменных, называется замк­нутой и представляет собой высказывание об элементах, функциях и отношениях, которое принимает значение и или л. На рис. 10 рассмотрен случай замкнутой формулы.

Формула, содержащая свободные переменные, называется открытой и представляет собой отношений, заданное на множестве V,

Это отношение может быть истинным для одних значений из области интепретации и ложным для других.

При такой интерпретации выделяют три класса формул, тождест­венно истинные, тождественно ложные и выполнимые.

Тождественно истинные формулы (или тавтологии) -это особый класс формул исчисления предикатов, которые принимают значение “истины”  для всех интерпретаций входящих в нее предметных постоянных, функциональных и предикатных символов; эти формулы иг­рают роль законов и аксиом исчисления предикатов; любые подстановки и замещения в тождественно истинной формуле не изменяют ее значения.

Например,

для предиката P2(x, y):=”число x меньше числа y” формула "x$y(P2(x, y)):=”для любого целого числа x найдется число y, большее числа x” является тождественно истинной;

для любой F(x) формула $x(F(x))«ù"x(ùF(x)):=“формула ”существуют x, для которых F(x)=и”, эквивалентна формуле “не для всех x F(x)=л”” является тождественно истинной.

Тождественно ложные формулы (или противоречие)-это особый класс формул исчисления предикатов, которые принимают значение “ложь” для всех интерпретаций входящих в нее предметных постоянных, функциональных и предикатных символов; любые подстановки и замещения в тождественно ложной формуле не изменяют ее значения.

Например, для предиката P2(x, y):=”число x меньше числа y” формула $x"y(P2(x, y)):=”существует целое число x, которое меньше любого целого числа y” является тождественно ложной;

для любой F(x) формула $x(F(x))&"x(ùF(x)):=”“существует x, для которой F(x)=и”, и “для всех x F(x)=л ”” является тождественно ложной.

Выполнимые формулы - это особый класс формул исчисления преди­катов, которые принимают значение “истина”в некоторой области, т.е. не для всех интерпретаций входящих в нее предметных постоянных, функциональных и предикатных символов.

Например, формула $x(F(x))®ù"x(F(x)) является истинной для одного элемента множества V и ложной для всех элементов этого множества, т.к.

$x(F(x))®ù"x(F(x)):=” если существует x, для которого F(x)=и, то не для всех х универсума F(x)=и” .

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

 

 

Случайная новость